Mitochondrial Imaging with Combined Fluorescence and Stimulated Raman Scattering Microscopy Using a Probe of the Aggregation-Induced Emission Characteristic.
نویسندگان
چکیده
In vivo quantitative measurement of biodistribution plays a critical role in the drug/probe development and diagnosis/treatment process monitoring. In this work, we report a probe, named AIE-SRS-Mito, for imaging mitochondria in live cells via fluorescence (FL) and stimulated Raman scattering (SRS) imaging. The probe features an aggregation-induced emission (AIE) characteristic and possesses an enhanced alkyne Raman peak at 2223 cm-1. The dual-mode imaging of AIE-SRS-Mito for selective mitochondrion-targeting was examined on a homemade FL-SRS microscope system. The detection limit of the probe in the SRS imaging was estimated to be 8.5 μM. Due to the linear concentration dependence of SRS and inertness of the alkyne Raman signal to environmental changes, the intracellular distribution of the probe was studied, showing a local concentration of >2.0 mM in the mitochondria matrix, which was >100-fold higher than the incubation concentration. To the best of our knowledge, this is the first time that the local concentration of AIE molecules inside cells has been measured noninvasively and directly. Also, the nonquenching effect of such AIE molecules in cell imaging has been verified by the positive correlation of FL and SRS signals. Our work will encourage the utilization of SRS microscopy for quantitative characterization of FL probes or other nonfluorescent compounds in living biological systems and the development of FL-SRS dual-mode probes for specific biotargets.
منابع مشابه
Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملCoherent nonlinear optical imaging: beyond fluorescence microscopy.
The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-sta...
متن کاملLive-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.
Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioo...
متن کاملLabel-free imaging of biomolecules in food products using stimulated Raman microscopy.
The development of methods that allow microscale studies of complex biomaterials based on their molecular composition is of great interest to a wide range of research fields. We show that stimulated Raman scattering (SRS) microscopy is an excellent analytical tool to study distributions of different biomolecules in multiphasic systems. SRS combines the label-free molecular specificity of vibrat...
متن کاملDetection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy
The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 139 47 شماره
صفحات -
تاریخ انتشار 2017